Graph of a Linear Function |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The linear function can be written as f(x) = mx + b in function form or y = mx + b in equation form, where the parameters m and b are real constants and x is a real variable. The constant m
is often called the slope of the line or gradient, while b gives the
value of the y-intercept, which gives the point of intersection between
the graph of the function and the y-axis. Changing these parameters affects their graphs. For example the equation y = x + 2, where m = 1 and b = 2 has the graph |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Suppose we change the value of m into m = 2. Our equation becomes y = 2x + 2 and has the graph | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
As you can see, the line y = 2x +2 is steeper than the line y = x + 2. Now, suppose we change the value of b from the first equation into b = 5, we have the equation y = x + 5. The graph of this linear equation is |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
From this graph, we can say that the line y = x + 5 translates the line y = x + 2 by 3 steps upward. Hence, changing m makes the line steeper or shallower, while changing b moves the line up or down. We now know that in the case of a linear function y = f(x), expressed in slope-intercept form y = mx + b, m and b are parameters. Also, f(x) = kx represents a direct variation (proportional relationship). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Functions Involving Absolute Value |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
From the definition of the absolute value of a number, the equation y = |x| is given by |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sketching the graph of the equation y = |x|, we have | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Notice that y = |x| is a combination of two linear equations: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(1) y = x, where m = 1 and b = 0, and (2) y = -x, where m = -1 and b = 0. Since these equations are both linear, we follow the same rule as what we have learned about changing the parameters m and b of a linear equation. Changing m would make the lines steeper or shallower, while changing b would translate the lines upward or downward. For example, |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The graph of this equation is | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Try these questions |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Wednesday, July 9, 2014
Graph of a Linear Function
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment